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Abstract— Non-stationarity is a fundamental challenge in
multi-agent reinforcement learning (MARL), where agents
update their behaviour as they learn and individual agents
may have an incomplete view of the actions of others. Many
theoretical advances in MARL avoid the challenge of non-
stationarity by coordinating the policy updates of agents in
various ways, including synchronizing times at which agents
are allowed to revise their policies. In this paper, we study
MARL in stochastic games, and show that a recent decentral-
ized Q-learning algorithm can be modified to accommodate
asynchronous policy updates while continuing to give high
probability guarantees of equilibrium. In this generalization,
players need not agree on the schedule of policy update times,
and may change their policies at their own, separately selected
times. This allows for greater decentralization and tames non-
stationarity without imposing the coordination assumptions of
prior work.

I. INTRODUCTION

Multi-agent systems are characterized by the coexistence
of several autonomous agents acting in a shared environment.
In multi-agent reinforcement learning (MARL), agents in the
system change their behaviour in response to the feedback
information received in previous interactions. When agents
do not directly observe the actions of their counterparts, the
system is non-stationary from any one agent’s perspective,
and agents attempt to optimize their performance against a
moving target [1]. The non-stationarity of MARL environ-
ments has been identified as one of the fundamental problems
in MARL [2]. In contrast to the rich literature on single-
agent learning theory, the theory of MARL is relatively
underdeveloped, due in large part to its inherent challenges
of non-stationarity and decentralized information.

This paper studies learning algorithms for stochastic
games, a common framework for MARL in which the cost-
relevant history of the system is summarized by a state
variable. In this paper, we focus on stochastic games in
which each agent fully observes the system’s state variable
but does not observe the actions of other agents, exacerbating
the challenge of non-stationarity.

Early rigorous work in MARL in stochastic games avoided
the problem of non-stationarity by studying applications in
which joint actions were observed by all agents [3], [4], [5].
More recently, there has been interest in the individual action
learner setting, where actions are not shared between agents.
In the individual action learner setting, several rigorous
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contributions have been made recently, including [6], [7],
[8], [9], [10], to be discussed shortly.

Of the recent advances in MARL in the individual action
learner setting, many of the algorithms with strong guaran-
tees have circumvented the challenge of non-stationarity by
relying, implicitly or explicitly, on coordination between the
agents. In particular, several algorithms rely on some form
of synchrony, whereby agents agree on the times at which
they may revise their behaviour and are constrained to fix
their policies at other times. While this is justifiable in some
settings, it can be restrictive in others, including applications
where parameters are selected independently. As such, it
would be desirable to provide MARL algorithms that do not
require synchrony but still come with rigorous performance
guarantees in the individual action learner setting.

Contributions: In this paper, we study a modification
of the decentralized Q-learning algorithm of [6], a recent
algorithm proposed for weakly acyclic N -player stochas-
tic games. By employing a constant learning rate in the
Q-learning algorithm, we show that inertial best-response
dynamics provide a mechanism for taming non-stationarity
without coordinating players’ parameter choices ahead of
play. Under appropriate parameter selection, we show that
this algorithm drives policies to equilibrium with arbitrarily
high probability.

Notation: For a standard Borel space A, we let P(A)
denote the set of probability measures on A with its Borel σ-
algebra. For standard Borel spaces A and B, we let P(A|B)
denote the set of transition kernels on A given B.

A. Related Work

This paper studies stochastic games in which each agent
fully observes the system state but does not observe the
actions of other players.1 As such, we are interested in
MARL algorithms that make use only of one’s history of
state observations, individual actions, and cost feedback. This
information paradigm is common in the literature in MARL,
with examples such as [7], [8], [9], [10], [6], [11], [12],
and is sometimes called the independent learning paradigm.
This terminology is, however, not uniform, as independent
learning has also recently been used to refer to learners that
update their policies in a (perhaps myopic) self-interested
manner, such as via best-response updates or gradient-like
updates [13].2

1We use the terms players and agents interchangeably.
2In response to the changing conventions, we recommend that learners

who condition only on their individual action history should be called
individual action learners, in analogy to their counterpart of joint action
learners.



At least two challenges emerge under imperfect moni-
toring, when the joint action is not observed. First, agents
cannot form estimates about the policies of other agents.
In extreme examples, players may be unaware of the very
existence of their counterparts. Second, players cannot form
estimates about joint action values, yielding several promis-
ing joint action learning algorithms unusable.

Rather than estimating a global joint action Q-function,
several works have studied the prospect of greedily changing
one’s policy, either in a best-response sense using a local
action Q-function, or in a gradient sense. To handle the
challenge of non-stationarity, some authors, e.g. [7], have
proposed the use of a multi-timescale approach, whereby
some agents change their policies faster than others, possibly
in an alternating manner. In these works, agreement on a
particular schedule for policy updating may be interpreted
as an implicit form of parameter coordination.

An alternative approach involves responding to one’s
environment without accounting for the existence of other
players at all. Works in this tradition follow the regret testing
paradigm of Foster and Young [14], which presented an al-
gorithm for stateless games. This approach was later studied
by [15] and [16] among others in the context of stateless
repeated games, where impressive convergence guarantees
can be made due to the absence of state dynamics that
complicate value estimation.

In [6], the regret testing paradigm of Foster and Young
was modified for multi-state stochastic games, where one
must account for both the immediate cost of an action and
also the cost-to-go, which depends on the evolution of the
state variable. The decentralized Q-learning algorithm of [6]
instructs agents to agree on an increasing sequence of policy
update times, (tk)k≥0, and to fix one’s policy within the
intervals [tk, tk+1), called the kth exploration phase. In so
doing, the joint policy process is fixed over each exploration
phase, and within each exploration phase, each agent faces an
MDP. Provided the exploration phase lengths Tk := tk+1 −
tk are sufficiently long, this allows for analysis of learning
iterates using single-agent learning theory.

In effect, the exploration phase technique of [6] decouples
learning from adaptation, and allows for separate analysis
of learning iterates and policy dynamics. This allows for
approximation arguments to be used, whereby the dynamics
of the policy process resemble those of an idealized process
in which players obtain noise-free learning iterates for use in
their policy updates. This has lead to a series of theoretical
contributions in MARL that all make use of the exploration
phase technique, including [9] and [10].

One natural criticism of the exploration phase technique
described above is the synchronization of policy updates.
In the description above, agents agree on the policy update
times {tk}k≥0 exactly, and no agent ever updates its policy
in the interval (tk, tk+1 − 1]. This can be justified in some
settings, but is demanding in decentralized settings where
parameters are selected independently across players. Indeed,
the assumption of synchrony is made in various works in the
regret testing tradition, including [14], [15] and [16].

Intuitively, asynchrony may be problematic for regret
testers because the action-value estimates of players depend
on historical data from each player’s most recent exploration
phase. As such, if other players change their policies during
an individual’s exploration phase, the individual receives
feedback from different sources, and its learning iterates
may not approximate any quantity relevant to the prevailing
environment at the time of the agent’s policy update. These
changes of policy during an exploration phase constitute
disruptions of a player’s learning, and analysis of the overall
joint policy process is difficult when players do not reliably
learn accurate action-values.

In [16], a heuristic argument suggested that the use of iner-
tia in policy updating may allow one to relax the assumption
of perfect synchrony in regret testing algorithms for stateless
repeated games. The premise of this argument is such: if
players occasionally abstain from changing their policies due
to random inertia, then they will abstain from disrupting
the learning of other agents. If the exploration phase of a
given individual is allowed to proceed for a sufficiently long
time without disruptions, then any errors may be corrected,
and the learned estimates should be approximately correct.
In this way, it is argued that inertia acts as a random
coordination mechanism, and that perfect synchrony may
not be necessary. In this paper, we formalize this heuristic
argument and show that it is essentially correct, with one
caveat: our analysis reveals that the value estimation protocol
must be modified to account for the non-stationarity in the
environment. In particular, the algorithm of this paper uses a
constant learning rate to ensure that learning iterates rapidly
overcome outdated feedback data.

II. MODEL

A. Stochastic Games
We study stochastic games with finitely many players.

Formally, a stochastic game G is described by a list:

G =
(
N ,X, {Ui, ci, βi : i ∈ N}, P, ν0

)
. (1)

The components of G are as follows: N = {1, 2, . . . , N} is
a finite set of N agents. The set X is a finite set of system
states. For each player i ∈ N , Ui is i’s finite set of actions.
We write U = ×i∈NUi, and refer to elements of U as joint
actions. For each player i, a function ci : X × U → R
determines player i’s stage costs, which are aggregated using
a discount factor βi ∈ [0, 1). The initial system state has
distribution ν0 ∈ P(X), and state transitions are governed
by a transition kernel P ∈ P(X|X× U).

At time t ∈ Z≥0, the state variable is denoted by xt,
and each player i selects an action uit ∈ Ui according to its
policy, to be described shortly. The joint action at time t is
denoted ut. Each player i then incurs a cost cit := ci(xt,ut),
and state variable evolves according to xt+1 ∼ P (·|xt,ut).
This process is then repeated at time t+ 1, and so on.

A policy is a rule for selecting actions according to the
observed history of the system. Here, we assume that at time
t ≥ 0, player i observes the following information:

Iit = (x0, u
i
0, c

i
0, x1, . . . , c

i
t−1, xt).



Player i fully observes the system state, its own actions,
and its own cost realizations, but does not observe the actions
of other players directly. We do not assume that player i
knows the function ci.

In general, action selection can incorporate random-
ness, and players may use arbitrarily complicated, history-
dependent policies. However, our analysis will focus on sta-
tionary (Markov) policies, a subset of policies that randomly
select actions in a time invariant manner that conditions only
on the currently observed state variable. The set of stationary
policies for player i ∈ N is denoted ΓiS and we identify
ΓiS with P(Ui|X), the set of transition kernels on Ui given
X. Henceforth, unqualified reference to a policy shall be
understood to mean a stationary policy.

Definition 1: For i ∈ N , ξ > 0, a policy πi ∈ ΓiS is
called ξ-soft if πi(ai|x) ≥ ξ for all (x, ai) ∈ X × Ui. A
policy πi ∈ ΓiS is called soft if it is ξ-soft for some ξ > 0.

Definition 2: A policy πi ∈ ΓiS is called deterministic if
for each x ∈ X, there exists ai ∈ Ui such that πi(ai|x) = 1.

The set of deterministic stationary policies for player i is
denoted by ΓiSD and is identified with the set of functions
from X to Ui.

Notation: We let ΓS := ×i∈NΓiS denote the set of joint
policies. To isolate player i’s component in a particular joint
policy π ∈ ΓS , we write π = (πi,π−i), where −i is used in
the agent index to represent all agents other than i. Similarly,
we write the joint policy set as ΓS = ΓiS ×Γ−iS , and so on.

For any joint policy π and initial distribution ν ∈ P(X),
there is a unique probability measure on the set (X× U)∞.
We denote this measure by Prπν , and let Eπ

ν denote its
expectation. We use this to define player i’s value function:

J i(π, ν) := Eπ
ν

[ ∞∑
t=0

βtcit

]
= Eπ

ν

[ ∞∑
t=0

βtci(xt,ut)

]
.

When ν = δs places full probability on some state s ∈ X,
we write J i(π, s) instead of J i(π, δs). For π = (πi,π−i),
we will also write J i(πi,π−i, ν) to isolate the role of πi.

Definition 3: Let ε ≥ 0, i ∈ N . A policy π∗i ∈ ΓiS is
called an ε-best-response to π−i ∈ Γ−iS if, for every s ∈ X,

J i(π∗i,π−i, s) ≤ inf
π̃i∈ΓiS

J i(π̃i,π−i, s) + ε.

The set of ε-best-responses to π−i is denoted BRi
ε(π
−i).

It is well-known that for any π−i ∈ Γ−iS , player i’s set of
0-best-responses BRi

0(π−i) is non-empty, and the infimum
above is in fact attained.

Definition 4: Let ε ≥ 0. A joint policy π∗ ∈ ΓS is called
an ε-equilibrium if π∗i ∈ BRi

ε(π
∗−i) for all i ∈ N .

For ε ≥ 0, we let Γε-eq
S ⊆ ΓS denote the set of ε-

equilibrium policies. It is known that the set Γ0-eq
S is non-

empty [17]. We also let Γε-eq
SD ⊂ ΓSD denote the subset of

stationary deterministic ε-equilibrium policies, which may be
empty in general.

B. Weakly Acyclic Stochastic Games

We now introduce weakly acyclic games, an important
subclass of games that will be the main focus of this paper.

Definition 5: A sequence {πk}k≥0 in ΓSD is called a
strict best-response path if for any k ≥ 0 there is a unique
player i ∈ N such that πik+1 6= πik and πik+1 ∈ BRi

0(π−ik ).
Definition 6: The stochastic game G is weakly acyclic if

(i) Γ0-eq
SD 6= ∅, and (ii) for any π0 ∈ ΓSD, there is a strict

best-response path from π0 to some π∗ ∈ Γ0-eq
SD .

The multi-state formulation above was stated in [6],
though weakly acyclic games had previously been studied
in stateless games [18]. An important special case is that of
stochastic teams, where ci = cj for each i, j, and the interests
of all agents are perfectly aligned. Markov potential games,
[19], [20], [21] constitute another special case of weakly
acyclic games.

C. Q-Functions in Stochastic Games

In the stochastic game G, when the other players use a
stationary policy π−i ∈ Γ−iS , player i faces an environment
that is equivalent to a single-agent MDP. The MDP in
question depends on the policy π−i as well as the game
G, and (stationary Markov) optimal policies for this MDP
are equivalent to 0-best-responses to π−i in the game G.

Player i’s best-responses to a policy π−i ∈ Γ−iS can
be characterized using an appropriately defined Q-function,
Q∗iπ−i : X × Ui → R.3 The function Q∗iπ−i can be defined
by a fixed point equation of a Bellman operator, but here we
give an equivalent definition in terms of the optimal policy
of the corresponding MDP:

Q∗iπ−i(x, a
i) := Eπ∗

ν

[ ∞∑
t=0

(βi)tci(xt,ut)

∣∣∣∣∣x0 = x, ui0 = ai

]
,

for all (x, ai) ∈ X× Ui, where π∗ = (π∗i,π−i) and π∗i ∈
BRi

0(π−i) ∩ ΓiSD.

Definition 7: For Qi : X× Ui → R and ε ≥ 0, we define

B̂R
i

ε(Q
i) := {π∗i ∈ ΓiSD : Qi(x, π∗i(x))

≤ min
ai∈Ui

Qi(x, ai) + ε,∀x ∈ X}.

The set B̂R
i

ε(Q
i) is the set of stationary deterministic

policies that are ε-greedy with respect to Qi. The function
Qi plays the role of an action-value function, and for Qi =

Q∗iπ−i , we have B̂R
i

ε(Q
∗i
π−i) = BRi

ε(π
−i) ∩ ΓiSD.

When the remaining players follow a stationary policy,
player i can use Q-learning to estimate its action-values,
which can then be used to estimate a 0-best-response policy.
The situation is more complicated when the remaining play-
ers revise their policies over time. Under this non-stationarity,
Q-learning may not be guaranteed to converge, and this
procedure for estimating a best-response may be ineffective.
These issues were considered by [6], who proposed the
Decentralized Q-learning algorithm as a means of estimating
best-response policies in the presence of policy updating, but
required synchronized policy updating. In the next section,

3We use the terms Q-function, action-value function, and state-action
value function interchangeably.



we present Algorithm 1, a modification of Decentralized Q-
learning that allows for decentralized parameter selection and
can tolerate non-stationarity of the learning environment.

III. ASYNCHRONOUS DECENTRALIZED Q-LEARNING

An asynchronous variant of Decentralized Q-learning is
presented in Algorithm 1. Unlike in the original decentralized
Q-learning algorithm, Algorithm 1 allows for the sequence of
exploration phase lengths {T ik}k≥0 to vary by agent, employs
constant learning rate, and does not reset Q-factors at the
end of an exploration phase. These discrepancies will be
addressed in Section V.

Algorithm 1: Asynchronous Decentralized Q-Learning
1 Set Parameters
2 Qi ⊂ RX×Ui : a compact set
3 {T ik}k≥0: a sequence in N of learning phase lengths
4 Put ti0 = 0 and tik+1 = tik + T ik for all k ≥ 0.
5 ρi ∈ (0, 1): experimentation probability
6 λi ∈ (0, 1): inertia during policy update
7 δi ∈ (0,∞): tolerance level for sub-optimality
8 αi ∈ (0, 1): step-size parameter

9 Initialize πi0 ∈ ΓiSD , Q̂i0 ∈ Qi (arbitrary)
10 for k ≥ 0 (kth exploration phase for agent i )
11 for t = tik, t

i
k + 1, . . . , tik+1 − 1

12 Observe xt

13 Select uit =

{
πik(xt), w.p. 1− ρi

ui ∼ Unif(Ui), w.p. ρi

14 Observe cost cit := c(xt, ut), state xt+1

15 Put ∆i
t = cit + βi minai Q̂

i
t(xt+1, a

i)

16 Q̂it+1(xt, u
i
t) = (1− αi)Q̂it(xt, uit) + αi∆i

t

17 Q̂it+1(x, ui) = Q̂it(x, u
i), for all (x, ui) 6= (xt, u

i
t)

18 if πik ∈ B̂R
i

δi(Q̂
i
ti
k+1

), then
19 πik+1 ← πik
20 else

21 πik+1 ←

{
πik, w.p. λi

πi ∈ B̂R
i

δi(Q̂
i
ti
k+1

), w.p. 1− λi

A. Primitive Random Variables

We now introduce several collections of primitive random
variables that will be used in describing the assumptions and
implementation of Algorithm 1. For any player i ∈ N and
t ≥ 0, we define the following random variables:
• {Wt}t≥0 is an identically distributed, [0, 1]-valued

stochastic process. For some f : X × U × [0, 1] → X,
state transitions are driven by {Wt}t≥0 via f :

Pr(xt+1 = s′|xt = s,ut = a) = P (s′|s, a)

=Pr (Wt ∈ {w : f(s, a, w) = s′}) ,

for any (s, a, s′) ∈ X× U× X and t ≥ 0;
• ũit ∼ Unif(Ui);
• ρ̃it ∼ Unif([0, 1]);
• λ̃it ∼ Unif([0, 1]);

• For non-empty Bi ⊆ ΓiSD, π̃it(B
i) ∼ Unif(Bi);

• T it is an N-valued random variable, elaborated below.
Assumption 1: The collection of primitive random vari-

ables V1 ∪ V2 is mutually independent, where

V1 :=
⋃

i∈N ,t≥0

{
Wt, ρ̃

i
t, ũ

i
t, λ̃

i
t, T

i
t

}
,

V2 :=
⋃

i∈N ,t≥0

{
π̃it(B

i) : Bi ⊆ ΓiSD, B
i 6= ∅

}
.

Remark: The random variables in V1 ∪ V2 are taken to
be primitive random variables that, with the exception of
exploration phase lengths {T ik}i∈N ,k≥0, do not depend on
any player’s choice of hyperparameters. We also note that
the primitive random variables {ũit : i ∈ N , t ≥ 0} should
not be conflated with the action process {uit : i ∈ N , t ≥ 0},
which depends on the sample path and is not a collection of
primitive random variables.

B. Assumptions

In order to state our main result, Theorem 1, we now
impose some assumptions on the underlying game G and on
the choices of hyperparameters at each player.

Assumption 2: For any pair of states (s, s′) ∈ X×X, there
exists H = H(s, s′) ∈ N and a sequence of joint actions
a0, . . . , aH ∈ U such that

Pr(xH+1 = s′|x0 = s,u0 = a0, . . . ,uH = aH) > 0.

Assumption 2 requires that the state process can be driven
from any initial state to any other state in finitely many steps,
provided a suitable selection of joint actions is made. This is
a rather weak assumption on the underlying transition kernel
P , and is quite standard in the theory of MARL (c.f. [13,
Assumption 4.1, Case iv]).

Our next assumption restricts the hyperparameter selec-
tions in Algorithm 1. Let δ̄ := min (A \ {0}), where

A :=
{∣∣Q∗iπ−i(s, ai1)−Q∗iπ−i(s, a

i
2)
∣∣ :

i ∈ N ,π−i ∈ Γ−iSD, s ∈ X, ai1, ai2 ∈ Ui
}
.

The quantity δ̄, defined originally by [6] and recalled
above, is the minimum non-zero separation between two
optimal Q-factors with matching states, minimized over all
agents i ∈ N and over all policies π−i ∈ Π−i.

For any baseline policy π ∈ ΓSD and fixed exploration
parameters {ρi}i∈N , we use the notation π̂ ∈ ΓS to denote
a corresponding behaviour policy, which is stationary but
not deterministic. When using π̂i, agent i ∈ N follows πi

with probability 1 − ρi and mixes uniformly over Ui with
probability ρi. [6, Lemma B3] shows that the optimal Q-
factors for these two environments will be close provided ρi

is sufficiently small for all i. In particular, there exists ρ̄ > 0
such that if ρi ∈ (0, ρ̄) ∀i ∈ N , then

‖Q∗jπ−j−Q
∗j
π̂−j‖∞ <

min{δi, δ̄ − δi}
4

,∀j ∈ N ,π−j ∈ Γ−jSD.

Assumption 3: For all i ∈ N , δi ∈ (0, δ̄) and ρi ∈ (0, ρ̄).



Assumption 4: There exists integers R, T ∈ N such that

Pr
(
∩i∈N ,k≥0

{
T ik ∈ [T,RT ]

})
= 1.

When all players use Algorithm 1, we view the result-
ing sequence of policies {πik}k≥0 as player i’s baseline
policy process, where πik is i’s baseline policy during
[tik, t

i
k+1), player i’s kth exploration phase. This policy

process {πik}k≥0 is indexed on the coarser timescale of
exploration phases. For ease of reference, we also introduce
a sequence of baseline policies indexed by the finer timescale
of stage games. For t ≥ 0, we let φit = πik whenever
t ∈ [tik, t

i
k+1) denote player i’s baseline policy during the

stage game at time t. The baseline joint policy at stage game
t is then denoted φt = (φit)i∈N . Furthermore, we refer to
the collection of Q-factor step-size parameters {αi}i∈N as
α ∈ (0, 1)N .

Theorem 1: Let G be a weakly acyclic game and suppose
each player i ∈ N uses Algorithm 1 to play G. Suppose
Assumptions 1–4 hold, and let ε > 0. There exists ᾱε > 0
and a function T̄ε(0, 1)N × N→ N such that if

max
i∈N

αi < ᾱε, and T ≥ T̄ε(α, R),

then Pr(φt ∈ Γ0-eq
SD ) ≥ 1− ε, for all sufficiently large t ∈ N.

The remainder of this paper is devoted to proving Theo-
rem 1 and discussing insights from the analysis of the proof.

IV. PROOF OF THEOREM 1

In the analysis to follow, we study the performance of
Algorithm 1 under a fixed realization of the primitive explo-
ration phase random variables T = {T ik : i ∈ N , k ≥ 0}.
We now introduce several objects to facilitate the analysis,
and we suppress any dependence on the realization of T .

A. Various Notations and Constructions for the Proof

For each i ∈ N , we arbitrarily order non-empty subsets
of ΓiSD as Bi,1, . . . , Bi,mi , where mi = |2ΓiSD \ ∅|. We
introduce the following new quantities for each t ≥ 0:
• ωit := (ρ̃it, ũ

i
t, λ̃

i
t, π̃

i
t(B

i,1), . . . , π̃it(B
i,mi)), ∀i ∈ N ;

• ωt := (Wt, ω
1
t , . . . , ω

N
t );

• $t := (ωt,ωt+1, . . . );
• Q̂t := (Q̂1

t , . . . , Q̂
N
t );

• ht := (x0,φ0, Q̂0, . . . , xt,φt, Q̂t);

• Ht :=
(
X× ΓSD × RX×U1 × · · · × RX×UN

)t+1

;

• Ht,eq := {ht ∈ Ht : φt ∈ Γ0-eq
SD };

For i ∈ N , t ≥ 0, let the functions Qit and Φt be con-
structed such that Qit = Qit(hs,$s), and φt = Φt(hs,$s),
for all 0 ≤ s ≤ t.

Next, for any s, t ≥ 0 and any i ∈ N , we introduce
a function Q̄it+s(ht,$t) that reports the hypothetical Q-
factors player i would have obtained if the baseline policies
were frozen at time t. That is, the history up to time t is given
by ht, the primitive random variables from t on are given

by $t, and we obtain the hypothetical ($t-measurable)
continuation trajectory (x̄t, ūt, . . . , x̄t+s, ūt+s), as x̄t := xt,

x̄t+m+1 = f(x̄t+m, ūt+m,Wt+m), ∀ 0 ≤ m ≤ s,

where for each player j and time t+m ≥ t,

ūjt+m :=

{
φit(x̄t+m), if ρ̃it+m > ρi

ũit+m otherwise.

Note that the index of φit is not t + m, which reflects
that, in this hypothetical continuation, the baseline policies
were frozen at time t. Each hypothetical Q-factor estimate
Q̄it+s(s, a

i) is then (analytically) built out of this hypothetical
trajectory using the regular Q-learning update with the initial
condition prescribed by Q̂t.

B. Supporting Results on Q-Learning Iterates

Recall that for each player i, the set Qi ⊂ RX×Ui is
compact, and so Mi := sup{‖Qi‖∞ : Qi ∈ Qi} <∞.

Lemma 1: We have that

max
i∈N

sup
t≥0

∥∥∥Q̂it∥∥∥∞ ≤ max
i∈N

{
‖ci‖∞

(1− βi)
,Mi

}
<∞.

Proof: Let M := maxi∈N

{
‖ci‖∞
(1−βi) ,Mi

}
. For all i ∈ N ,

we have

‖Q̂it+1‖∞ ≤

max

{
(1− αi)‖Q̂it‖∞ + αi

(
‖ci‖∞ + βi‖Q̂it‖∞

)
, ‖Q̂it‖∞

}
.

If ‖Q̂it‖∞ ≤M , then

‖Q̂it+1‖∞ ≤ max

{
(1− αi)M + αi

(
‖ci‖∞ + βM

)
,M

}
= max

{
M + αi

(
‖ci‖∞ − (1− βi)M︸ ︷︷ ︸

≤0

)
,M

}
= M.

This proves the lemma since ‖Q̂i0‖∞ ≤M .

The following lemma says that players can learn their
optimal Q-factors accurately when they use sufficiently small
step sizes and when their learning is not disrupted by policy
updates for a sufficiently long number of steps. It is worded
in terms of primitive random variables and hypothetical
continuation Q-factors for reasons described in Section V.

Lemma 2: For any ξ > 0, there exists α̂ξ > 0 and function
T̂ξ : (0, 1)N → N such that if (i) αi ∈ (0, α̂ξ) for all i ∈ N ,
and (ii) T̃ ≥ T̂ξ(α), then

Pr(Ωt:t+T̃ ) ≥ 1− ξ, ∀ t ≥ 0, ht ∈ Ht,

where

Ωt:t+T̃ =
{
$t : max

i∈N
‖Q̄i

t+T̃
(ht,$t)− Q̂∗iφ−it ‖∞ < ξ

}
.

We fix α̂ξ and T̂ξ(·) with the properties outlined in Lemma 2.

Proof: Since each player i’s policy is ρi-soft, our As-
sumption 2 implies the persistent excitation assumption of



[23, Assumption 1]. The result then follows from Lemma 1
and [23, Theorem 3.4], using the Markov inequality. �

C. A Supporting Result Controlling Update Frequencies

A core challenge of analyzing non-synchronized multi-
agent learning is that when one player updates its policy, it
changes the environment for others. That is, policy updates
for one player constitute potential destabilizations of learning
for others. We now introduce a sequence of time intervals
{[τmin

k , τmax
k ]}k≥0 that will be useful in quantifying and

analyzing the effects of such disruptions.
Definition 8: Let τmin

0 = τmax
0 := 0. For k ≥ 0, define

τmin
k+1 := inf{tin : tin > τmax

k , i ∈ N , n ≥ 0}
τmax
k+1 := inf

{
t ≥ τmin

k+1 : ∀ i ∈ N ,∃n ∈ N s.t. tin ∈ [τmin
k+1, t],

and inf{tin̄ > t : i ∈ N , n̄ ∈ N} ≥ t+ T/N
}
,

where T is the constant appearing in Assumption 4.

The intervals [τmin
k , τmax

k ] represent active phases, during
which players may change their policies. The (k + 1)th

active phase starts at τmin
k+1, which is defined as the first

time after τmax
k at which some agent has an opportunity to

revise its policy. As a consequence, no policy updates occur
in (τmax

k , τmin
k+1).

The definition of τmax
k+1 is slightly more involved: it requires

that (a) each agent has an opportunity to switch policies
in [τmin

k+1, τ
max
k+1 ] and (b) that no agent finishes its current

exploration phase in the next T/N stage games.
These active phases are characterized by the end times of

each player’s exploration phases, {tin : i ∈ N , n ≥ 1}, and
therefore depend on the exploration phase length parameters
T = {T in : i ∈ N , n ≥ 0}. We recall that the collection T
is generated at the outset of play, independently of the other
primitive random variables. In the analysis to follow, we fix
a particular realization of T satisfying Assumption 4 and our
notation suppresses the dependence of {τmin

k , τmax
k }k≥0 on

this realization. All statements are understood to hold almost
surely.

Lemma 3: The sequences {τmin
k }k≥0 and {τmax

k }k≥0 are
well-defined (i.e. the infimum defining each term is achieved
by a finite integer), and, for any k ≥ 0, we have that
(a) τmin

k+1 ≥ τmax
k + T/N ;

(b) For each i ∈ N , we have∑
n≥0

1{tin ∈ [τmin
k , τmax

k ]} ≤ R+ 1.

Proof:
For some k ≥ 0, suppose that (a) and (b) hold for all

l ≤ k. That is,
(a) τmin

l+1 ≥ τmax
l + T/N , for all 0 ≤ l ≤ k;

(b) for each i ∈ N , l ≤ k, we have∑
n≥0

1{tin ∈ [τmin
l , τmax

l ]} ≤ R+ 1.

We observe that this holds for k = 0. We will show the
following: (1) τmax

k+1 <∞; (2) τmin
k+2 ≥ τmax

k+1 + T/N ; (3) For

all i ∈ N ∑
n≥0

1{tin ∈ [τmin
k+1, τ

max
k+1 ]} ≤ R+ 1.

For each i ∈ N , let ni ∈ Z≥0 denote the index such that

tini−1 < τmin
k+1 ≤ tini .

By minimality of τmin
k+1, we have that tini−1 ≤ τmax

k . By
Assumption 4, we have T ini−1 ≤ RT and thus

tini = tini−1 + T ini−1 ≤ τmax
k +RT.

This, in turn, implies tini − τmin
k+1 ≤ RT − T/N , since

τmin
k+1 ≥ τmax

k + T/N by hypothesis.
We put t̂0 := maxi t

i
ni , and let j(0) ∈ N denote an agent

with tj(0)
nj(0) = t̂0.

For each l ∈ {0, 1, . . . , N − 1}, we define t̂l+1 as

t̂l+1 = min{tj
k̄
> t̂l : j ∈ N , k̄ ≥ 0}.

Observe that t̂0 ≤ τmax
k+1 . Moreover, if there exists some

l ≤ N − 1 such that t̂l+1 ≥ t̂l + T/N , then τmax
k+1 ≤ t̂l, and

thus τmax
k+1 <∞. We now argue that such l exists.

For the sake of a contradiction, suppose

max{t̂1 − t̂0, · · · , t̂N − t̂N−1} < T/N (†)

This implies

t̂N − t̂0 =

N−1∑
l=0

(
t̂l+1 − t̂l

)
< N · T

N
= T ≤ min

i,n
T in.

One concludes that the minima defining each {t̂l : 1 ≤
l ≤ N} are attained by N distinct minimizing agents, one
of whom is j(0). But then, for some l, we have

t̂0 = tj(0)
nj(0)

, and tj(0)
nj(0)

+ T j(0)
nj(0)

= t̂l ≤ t̂N ,

which implies T j(0)
nj(0) < T , contradicting Assumption 4.

We have thus shown that the set T 6= ∅, where T is given
by

T := {l ∈ {0, 1, . . . , N − 1} : t̂l+1 ≥ t̂+ T/N}.

Let l∗ = minT, and note that, if l∗ 6= 0, then t̂k+1 <
t̂k +T/N for all k < l∗. It follows that (1) τmax

k+1 = t̂l∗ <∞
and (2) τmin

k+2 = t̂l∗+1 ≥ τmax
k+1 + T/N .

We conclude by showing that (3) holds. That is,∑
n≥0

1{tin ∈ [τmin
k+1, τ

max
k+1 ]} ≤ R+ 1, ∀i ∈ N .

By Assumption 4, it suffices to show that

τmax
k+1 − τmin

k+1 < (R+ 1)T.

We have already shown t̂0 − τmin
k+1 ≤ RT − T/N , which

handles the case where l∗ = 0, and we focus on l∗ > 0.
Since t̂k+1 < t̂k + T/N for all k < l∗ and l∗ ≤ N − 1, we
have τmax

k+1 − τmin
k+1 = t̂l∗ − τmin

k+1 and

t̂l∗ − τmin
k+1 =

l∗−1∑
l=0

[
t̂l+1 − t̂l

]
+ t̂0 − τmin

k+1



≤ l∗(T/N) + (RT − T/N) < (R+ 1)T,

which concludes the proof. �

For k ≥ 0, we define Bk to be the event that the baseline
policy is a fixed equilibrium policy throughout the kth active
phase, [τmin

k , τmax
k ]. That is,

Bk :=
{
φτmin

k
= · · · = φτmax

k
∈ Γ0-eq

SD

}
.

We define L := `∗+1, where `∗ = max{`(π) : π ∈ ΓSD}
and `(π) denotes the length of a shortest strict best-response
path from π ∈ ΓSD to an equilibrium policy in Γ0-eq

SD .
Lemma 4: Let θ > 0, and define

ξ :=
1

(R+ 1)NL
min

{
θ,

1

2
min
i∈N
{δi, δ̄ − δi

}
.

Suppose maxi∈N α
i < α̂ξ and T ≥ NT̂ξ(α), where α̂ξ

and T̂ξ(·) are the objects specified in Lemma 2. For any
k ≥ 0 and history hτmax

k
∈ Hτmax

k ,eq, we have

Pr
(
Bk+1|hτmax

k

)
≥ 1− θ/L.

Remark: Since we are studying a particular realization of
the exploration phase lengths T , we have that τmax

k ∈ Z≥0

is some constant, and hτmax
k

is a τmax
k -history,

hτmax
k

= (x0,φ0, Q̂0, . . . , xτmax
k

,φτmax
k

, Q̂τmax
k

),

with φτmax
k
∈ ΓSD ∩ Γ0-eq.

Proof: We put t̃0 := τmin
k+1 and recursively define

t̃l+1 := min{tin > t̃l : i ∈ N , n ≥ 0}, ∀l ≥ 0.

We define m ∈ Z≥0 to be the index achieving t̃m = τmax
k+1 ,

and note that m = 0 is possible when τmax
k+1 = τmin

k+1.
Note that m counts the number of stage games after τmin

k+1

and on/before τmax
k+1 at which any player ends an exploration

phase. From the proof of Lemma 3 we have that

m ≤
∑
i∈N

∑
n≥0

1{tin ∈ [τmin
k+1, τ

max
k+1 ]} < (R+ 1)N.

For each l ∈ {0, · · · ,m}, let

Al := {i ∈ N : ∃ n(l) ∈ N s.t. tin(l) = t̃l}.

From our choices of ξ,α, and T ≥ NT̂ξ(α) and the fact
that t̃l ≥ τmin

k+1 ≥ τmax
k + T/N for all l ∈ {0, 1, . . . ,m}, we

have, by Lemma 2, that

Pr
(

Ωτmax
k :t̃l

)
≥ 1− ξ, ∀l ∈ {0, 1, . . . ,m},

where, for any s, t ≥ 0, we recall that Ωt:t+s is given by

Ωt:t+s =

{
$t : max

i∈N

∥∥∥Q̄it+s(ht,$t)−Q∗iφ−it

∥∥∥
∞
< ξ

}
.

Note that t̃0 = τmin
k+1, and the minimality defining τmin

k+1

implies that no player updates its policy during the interval
[τmax
k , τmin

k+1). It follows that the hypothetical continuation
trajectory defining each player i’s hypothetical Q-factors

Q̄i
t̃0

(hτmax
k

,$τmax
k

) coincides with the sample trajectory
defining Q̂t̃0

, since action selections and state transitions
are decided by φτmax

k
and $τmax

k
. Thus, by our choice of

t̃0 = τmin
k+1,

Q̄it̃0(hτmax
k

,$τmax
k

) = Q̂it̃0 , ∀i ∈ N .

For $τmax
k
∈ Ωτmax

k :t̃0
, each player i ∈ A0 recovers its

estimated Q-factors Q̂i
t̃0

within ξ of Q∗i
φ−i
τmax
k

, since

Q̂it̃0 = Qit̃0(hτmax
k

,$τmax
k

).

Since we have hypothesized that φτmax
k
∈ Γ0-eq

SD and chosen
ξ < 1

2 min{δi, δ̄−δi}, it follows that agent i does not change
its policy at time t̃0 = τmin

k+1 when given the opportunity to
revise its policy. In symbols, that is to say

$τmax
k
∈ Ωτmax

k :t̃0

⇒max
i∈N

∥∥∥∥Qit̃0(hτmax
k

,$τmax
k

)−Q∗i
φ−i
τmax
k

∥∥∥∥
∞
< ξ

⇒φt̃0 = Φt̃0(hτmax
k

,$τmax
k

) = φτmax
k

.

Repeating this logic, one has that if

$τmax
k
∈

⋂
0≤l≤m

Ωτmax
k :t̃l

then φt̃l = Φ(hτmax
k

,$τmax
k

) = φτmax
k

for each l ≤ m.
The probability of this intersection is lower bounded using

the union bound and Lemma 2:

Pr

 ⋂
0≤l≤m

Ωτmax
k :t̃l

 ≥ 1− (m+ 1)ξ ≥ 1− θ/L,

as desired. �

Lemma 5: Let θ > 0, and define

ξ :=
1

(R+ 1)NL
min

{
θ,

1

2
min
i∈N
{δi, δ̄ − δi

}
.

Suppose maxi∈N α
i < α̂ξ and T ≥ NT̂ξ(α), where α̂ξ

and T̂ξ(·) are the objects specified in Lemma 2. For any
k ≥ 0 and history hτmax

k
∈ Hτmax

k
\Hτmax

k ,eq, we have

Pr
(
Bk+L|hτmax

k

)
≥ pmin(1− θ),

where pmin :=
∏
j∈N min

{
1−λj
|ΓjSD|

, λj
}(R+1)L

> 0.

Proof Let π0, . . . ,π` be a (shortest) strict best-response path
from π0 := φτmax

k
to π` ∈ Γ0-eq

SD , and ` ∈ {1, . . . , `∗}. For
each pair of neighbouring joint policies πl and πl+1, there
exists exactly one player i(l) who switches its policy. That
is, πjl+1 = πjl for all j 6= i(l).

Consider the event that no agent updates its policy during
[τmax
k , τmax

k+1 ] due to inertia except player i(0), who updates
its policy exactly once to πi(0)

1 and remains inert at all other
update opportunities in [τmax

k , τmax
k+1 ].



By Lemma 2 and Lemma 3, the conditional probability of
this event given hτmax

k
is lower bounded by

(1− θ/L)
∏
j∈N

min

{
1− λj

|Πj |
, λj
}R+1

.

The same lower bound similarly applies to each transition
along π0, . . . ,π`, which leads to

Pr
(
φτmax

k+`
= π`

∣∣∣hτmax
k

)
≥(1− θ/L)`

∏
j∈N

min

{
1− λj

|Πj |
, λj
}(R+1)`

.

Next, consider the event that no agent updates its policy
during [τmax

k+` , τ
max
k+L] due to inertia. The conditional probabil-

ity of this event given hτmax
k+`

is lower bounded by∏
j∈N

(λj)(R+1)(L−`).

This results in

Pr(Bk+L|hτmax
k

) ≥ (1− θ/L)Lpmin.

This proves the lemma since (1− θ/L)L ≥ 1− θ. �

D. Proof of Theorem 1

Given ε > 0, let θ > 0 be the unique solution to

(1− θ)pmin

θ + (1− θ)pmin
− θ = 1− ε

and

ξ =
1

(R+ 1)NL
min

{
θ,

1

2
min
i∈N
{δi, δ̄ − δi}

}
.

Suppose that

max
i∈N

αi ≤ ᾱε := α̂ξ and T ≥ T̄ε(α, R) := NT̂ξ(α).

By Lemmas 4 and 5, for all k ≥ 0,

Pr(Bk+L|Bk) ≥ 1− θ, (2)
Pr(Bk+L|Bck) ≥ (1− θ)pmin. (3)

Let pk := Pr(Bk) for all k ≥ 0. The subsequent details
lower bounding pk+mL for large m and every k < L are
omitted, as they resemble the proofs of [6] or [10].

�

V. DISCUSSION AND INSIGHTS

At its core, the proof of Theorem 1 amounts to first
showing that the probability of transiting to equilibrium in a
finite number of steps can be uniformly lower bounded and
then showing that the probability of remaining at equilibrium
can be made arbitrarily large with respect to this lower
bound. Once this can be done, the mechanics of the proof
parallel those of [6] or [10]. However, the analysis of [6]
or [10] must be considerably modified to lower bound the
transition probabilities in the way described above.

The first discrepancy is such: in the fully synchronized
version, where T in = T jn for all players i, j, we have that the

active phase are trivial, i.e. τmin
k = τmax

k for each k ≥ 0.
As such, there is no need to refer to baseline policies φt at
time t, as one can analyze policies on the coarser timescale
of active phases, indexed by exploration phases rather than
stage games. The desirable event, in this case, can be defined
as Bk = {πk ∈ Γ0-eq

SD } rather than the more convoluted
definition of Bk defined in Section IV.

In the un-synchronized variant, one intuitively expects
that returning to equilibrium requires that agents learn their
equilibrium Q-functions with sufficient accuracy. However,
this can only be guaranteed when agents spend a sufficiently
long time learning against their equilibrium environment.
From this, one sees that defining Bk = {φτmax

k
} is ill-

suited for our purposes, as it does not account for the event
where play arrives at equilibrium immediately before τmax

k .
In the latter event, a particular agent may have spent a long
timespan learning against a now outdated environment for
which its equilibrium policy may not be a best-response.

To preclude this obstacle, we defined Bk to be the event
where the baseline policy φt is fixed at some equilibrium
throughout the kth active phase [τmin

k , τmax
k ], and we have

defined τmax
k in way that guarantees each player will learn

against φτmax
k

for an appreciable length of time before
evaluating and revising its policy. Additionally, we have
replaced the decreasing learning rate of [6] with a constant
learning αi > 0 so that agent i can rapidly correct errors in
its Q-factor estimates that contain information about outdated
environments.

With these two modifications—of using a constant learn-
ing rate and studying the policy process during active phases
rather than during exploration phases—the first of two main
ideas suggested by [16] goes through: with positive proba-
bility, the policy process follows a strict best-response path,
along which most agents are inert at a given time while
the active agent learns its Q-factors accurately against an
unchanging environment. (C.f. Lemma 5.)

The second of the main ideas suggested by [16]—to
argue that Pr(Bk+L|Bk) can be made large relative to the
lower bound of transiting to equilibrium—requires a more
nuanced analysis in the presence of asynchrony. The natural
strategy is to argue that, with high probability conditional
on Bk, every agent accurately learns its Q-factors during
[τmin
k+l , τ

max
k+l ]. Unfortunately, conditioning on the event Bk

carries information that agents opted not to switch policies,
possibly for a reason other than inertia. In turn, this carries
information about the state-action trajectory before τmax

k and
indeed before τmin

k , which will influence the ensuing Q-
factor estimates and may have a confounding effect on the
conditional probabilities.

This point reveals why we have approached the problem
as we have, and why Lemma 2 is stated in terms of the
hypothetical continuation Q-factors, which depend only on
primitive random variables and the history up to the time of
conditioning, rather than in terms of the Q-factor estimates,
which depend on the sample path of realized states and
actions.



VI. CONCLUSIONS

In this paper, we considered an asynchronous variant of
the Decentralized Q-learning algorithm of [6]. We have
shown that Decentralized Q-learning can still drive policies
to equilibrium in weakly acyclic stochastic games without
making strong coordination assumptions such as synchro-
nizing the schedules on which players update their policies.
To accommodate asynchronous policy updating and non-
stationarity in each agent’s learning environment, we have
introduced a constant learning rate that can rapidly overcome
errors in learning estimates that are artifacts of outdated
information.
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[6] G. Arslan and S. Yüksel, “Decentralized Q-learning for stochastic
teams and games,” IEEE Transactions on Automatic Control, vol. 62,
no. 4, pp. 1545–1558, 2017.

[7] C. Daskalakis, D. J. Foster, and N. Golowich, “Independent policy
gradient methods for competitive reinforcement learning,” Advances
in Neural Information Processing Systems, vol. 33, pp. 5527–5540,
2020.

[8] M. Sayin, K. Zhang, D. Leslie, T. Başar, and A. Ozdaglar, “Decen-
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